информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 20 № 858

Выберите ОДНО из пред­ло­жен­ных ниже заданий: 20.1 или 20.2.

 

20.1 Ис­пол­ни­тель Робот умеет пе­ре­ме­щать­ся по лабиринту, на­чер­чен­но­му на плоскости, раз­би­той на клетки. Между со­сед­ни­ми (по сторонам) клет­ка­ми может сто­ять стена, через ко­то­рую Робот прой­ти не может.

У Ро­бо­та есть де­вять команд. Че­ты­ре команды — это команды-приказы:

 

вверх вниз влево вправо

 

При вы­пол­не­нии любой из этих ко­манд Робот пе­ре­ме­ща­ет­ся на одну клет­ку соответственно: вверх ↑ вниз ↓, влево ← , впра­во →. Если Робот по­лу­чит ко­ман­ду пе­ре­дви­же­ния сквозь стену, то он разрушится.

Также у Ро­бо­та есть ко­ман­да закрасить, при ко­то­рой за­кра­ши­ва­ет­ся клетка, в ко­то­рой Робот на­хо­дит­ся в на­сто­я­щий момент.

Ещё че­ты­ре команды —  это ко­ман­ды про­вер­ки условий. Эти ко­ман­ды проверяют, сво­бо­ден ли путь для Ро­бо­та в каж­дом из четырёх воз­мож­ных направлений:

 

сверху свободно  снизу свободно  слева свободно  спра­ва свободно

 

Эти ко­ман­ды можно ис­поль­зо­вать вме­сте с усло­ви­ем «если», име­ю­щим сле­ду­ю­щий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из ко­манд про­вер­ки условия. Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

 

В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

 

нц пока условие

последовательность команд

кц

 

Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

 

нц пока спра­ва сво­бод­но

вправо

кц

 

Выполните задание.

На бес­ко­неч­ном поле име­ют­ся че­ты­ре стены, соединённые между собой, ко­то­рые об­ра­зу­ют прямоугольник. Длины стен неизвестны. В левой вер­ти­каль­ной стене есть ровно один проход, в ниж­ней го­ри­зон­таль­ной стене

также есть ровно один проход. Про­ход не может при­мы­кать к углу прямоугольника. Точ­ные места про­хо­дов и ши­ри­на про­хо­дов неизвестны. Робот на­хо­дит­ся около ниж­не­го конца левой вер­ти­каль­ной стены, сна­ру­жи пря­мо­уголь­ни­ка и выше ниж­ней стены. На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

 

Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные вдоль стен пря­мо­уголь­ни­ка с внут­рен­ней стороны. Про­хо­ды долж­ны остать­ся незакрашенными. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого выше ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

 

 

При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться, вы­пол­не­ние ал­го­рит­ма долж­но завершиться. Ко­неч­ное рас­по­ло­же­ние Ро­бо­та может быть произвольным. Ал­го­ритм дол­жен ре­шать за­да­чу для лю­бо­го до­пу­сти­мо­го

расположения стен и лю­бо­го рас­по­ло­же­ния и раз­ме­ра про­хо­да внут­ри стены. Ал­го­ритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.

 

 

 

 

 

 

 

 

20.2 На­пи­ши­те программу, ко­то­рая в по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел опре­де­ля­ет ми­ни­маль­ное чётное число.

Программа по­лу­ча­ет на вход ко­ли­че­ство чисел в последовательности, а затем сами числа. В по­сле­до­ва­тель­но­сти все­гда име­ет­ся чётное число. Ко­ли­че­ство чисел не пре­вы­ша­ет 1000. Введённые числа не пре­вы­ша­ют 30 000.

Программа долж­на вы­ве­сти одно число — ми­ни­маль­ное чётное число.

 

Пример ра­бо­ты программы:

 

Входные данныеВыходные данные

4

3

20

6

8

6

Пояснение.

20.1 Ко­ман­ды ис­пол­ни­те­ля будем за­пи­сы­вать жир­ным шрифтом, а комментарии, по­яс­ня­ю­щие ал­го­ритм и не яв­ля­ю­щи­е­ся его частью, —курсивом. На­ча­ло ком­мен­та­рия будем обо­зна­чать сим­во­лом «|».

 

| Дви­га­ем­ся вверх, пока не дойдём до про­хо­да в стене,

нц пока не спра­ва свободно

вверх

кц

 

| Через про­ход вхо­дим внутрь прямоугольника

вправо

 

| Дви­га­ем­ся вниз до ниж­ней стены, за­кра­ши­вая все клет­ки на пути

нц пока снизу свободно

вниз

закрасить

кц

 

| Дви­га­ем­ся вправо, вдоль стены до прохода, за­кра­ши­ва­ем все клет­ки на пути

нц пока не снизу свободно

закрасить

вправо

кц

 

| Дви­га­ем­ся вправо, пе­ре­се­ка­ем про­ход в стене

нц пока снизу свободно

вправо

кц

 

| Дви­га­ем­ся вправо, вдоль стены до конца стены, за­кра­ши­ва­ем все клет­ки на пути

нц пока спра­ва свободно

закрасить

вправо

кц

 

| Дви­га­ем­ся вверх, вдоль вер­ти­каль­ной стены, за­кра­ши­ва­ем все клет­ки на пути

нц пока свер­ху свободно

закрасить

вверх

кц

 

| Дви­га­ем­ся влево, вдоль верх­ней го­ри­зон­таль­ной стены, за­кра­ши­ва­ем все клет­ки на пути

нц пока слева свободно

закрасить

влево

кц

 

| Дви­га­ем­ся вниз, вдоль стены, до про­хо­да в стене, за­кра­ши­ва­ем все клет­ки на пути

нц пока не слева свободно

закрасить

вниз

кц

 

Возможны и дру­гие ва­ри­ан­ты решения.

 

20.2 Ре­ше­ни­ем яв­ля­ет­ся программа, за­пи­сан­ная на любом языке программирования. При­мер вер­но­го решения, за­пи­сан­но­го на языке Паскаль:

 

var n,i,a,min: integer;

begin

readln(n);

min := 30001;

for i := 1 to n do

begin

readln(a);

if (a mod 2 = 0) and (a < min)

then min:= a;

end;

writeln(min)

end.

 

Возможны и дру­гие ва­ри­ан­ты решения. Для про­вер­ки пра­виль­но­сти ра­бо­ты про­грам­мы не­об­хо­ди­мо ис­поль­зо­вать сле­ду­ю­щие тесты:

 

Входные данныеВыходные данные
1

3

10

4

19

4
2

3

11

22

44

22
3

3

9

11

2

2