информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 11 № 572

На ри­сун­ке изоб­ра­же­на схема соединений, свя­зы­ва­ю­щих пунк­ты А, В, С, D, Е, F, G, Н. По каж­до­му со­еди­не­нию можно дви­гать­ся толь­ко в одном направлении, ука­зан­ном стрелкой. Сколь­ко су­ще­ству­ет раз­лич­ных путей из пунк­та А в пункт Н?

Пояснение.

Начнем счи­тать ко­ли­че­ство путей с конца маршрута — с го­ро­да H. Пусть NX — ко­ли­че­ство раз­лич­ных путей из го­ро­да H в город X, N — общее число путей.

 

В H можно при­е­хать из G, E или D, по­это­му N = NH = NG + NE + ND (*).

 

Аналогично:

 

NG = NF = 0;

NE = NF + NC + ND = 0 + 0 + 2 = 2;

ND = NB + NA = 1 + 1 = 2;

NF = NC = 0;

NC = 0;

NB = NА + NC = 1.

 

Подставим в фор­му­лу (*): N = 2 + 2 = 4.