СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Информатика
информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 20 № 280

Выберите ОДНО из пред­ло­жен­ных ниже заданий: 20.1 или 20.2.

 

Исполнитель Робот умеет пе­ре­ме­щать­ся по лабиринту, на­чер­чен­но­му на плоскости, раз­би­той на клетки. Между со­сед­ни­ми (по сторонам) клет­ка­ми может сто­ять стена, через ко­то­рую Робот прой­ти не может. У Ро­бо­та есть де­вять команд. Че­ты­ре команды — это команды-приказы:

 

вверх вниз влево вправо

 

При вы­пол­не­нии любой из этих ко­манд Робот пе­ре­ме­ща­ет­ся на одну клет­ку соответственно: вверх ↑ вниз ↓, влево ← , впра­во →. Если Робот по­лу­чит ко­ман­ду пе­ре­дви­же­ния сквозь стену, то он разрушится. Также у Ро­бо­та есть ко­ман­да закрасить, при ко­то­рой за­кра­ши­ва­ет­ся клетка, в ко­то­рой Робот на­хо­дит­ся в на­сто­я­щий момент.

Ещё че­ты­ре команды — это ко­ман­ды про­вер­ки условий. Эти ко­ман­ды проверяют, сво­бо­ден ли путь для Ро­бо­та в каж­дом из четырёх воз­мож­ных направлений:

 

сверху свободно  снизу свободно  слева свободно  спра­ва свободно

 

Эти ко­ман­ды можно ис­поль­зо­вать вме­сте с усло­ви­ем «если», име­ю­щим сле­ду­ю­щий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из ко­манд про­вер­ки условия. Последовательность команд — это одна или не­сколь­ко любых команд-приказов. Например, для пе­ре­дви­же­ния на одну клет­ку вправо, если спра­ва нет стенки, и за­кра­ши­ва­ния клет­ки можно ис­поль­зо­вать такой алгоритм:

если спра­ва сво­бод­но то

вправо

закрасить

все

 

В одном усло­вии можно ис­поль­зо­вать не­сколь­ко ко­манд про­вер­ки условий, при­ме­няя ло­ги­че­ские связ­ки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для по­вто­ре­ния по­сле­до­ва­тель­но­сти ко­манд можно ис­поль­зо­вать цикл «пока», име­ю­щий сле­ду­ю­щий вид:

нц пока условие

последовательность команд

кц

 

Например, для дви­же­ния вправо, пока это возможно, можно ис­поль­зо­вать сле­ду­ю­щий алгоритм:

нц пока спра­ва сво­бод­но

вправо

кц

 

 

Выполните задание.

На бес­ко­неч­ном поле есть го­ри­зон­таль­ная и вер­ти­каль­ная стены. Левый конец го­ри­зон­таль­ной стены соединён с нижним кон­цом вер­ти­каль­ной стены. Длины стен неизвестны. В вер­ти­каль­ной стене есть ровно один проход, точ­ное место про­хо­да и его ши­ри­на неизвестны.Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной не­по­сред­ствен­но над го­ри­зон­таль­ной сте­ной у её пра­во­го конца.На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные не­по­сред­ствен­но левее и пра­вее вер­ти­каль­ной стены. Про­ход дол­жен остать­ся незакрашенным. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого выше ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).

При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться, вы­пол­не­ние ал­го­рит­ма долж­но завершиться. Ко­неч­ное рас­по­ло­же­ние Ро­бо­та может быть произвольным. Ал­го­ритм дол­жен ре­шать за­да­чу для лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен и лю­бо­го рас­по­ло­же­ния и раз­ме­ра про­хо­дов внут­ри стен. Ал­го­ритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе. Со­хра­ни­те ал­го­ритм в тек­сто­вом файле.

 

 

20.2 Напишите программу, ко­то­рая в по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел опре­де­ля­ет ми­ни­маль­ное число, окан­чи­ва­ю­ще­е­ся на 4. Про­грам­ма по­лу­ча­ет на вход ко­ли­че­ство чисел в последовательности, а затем сами числа. В по­сле­до­ва­тель­но­сти все­гда име­ет­ся число, окан­чи­ва­ю­ще­е­ся на 4. Ко­ли­че­ство чисел не пре­вы­ша­ет 1000. Введённые числа не пре­вы­ша­ют 30 000. Про­грам­ма долж­на вы­ве­сти одно число — ми­ни­маль­ное число, окан­чи­ва­ю­ще­е­ся на 4.

 

 

Пример ра­бо­ты программы:

 

Входные данныеВыходные данные
3
24
14
34
14

Решение.

20.1 Следующий ал­го­ритм вы­пол­нит тре­бу­е­мую задачу.

 

нц

пока слева свободно

влево

кц

 

нц

пока не слева свободно

закрасить

вверх

кц

 

нц

пока слева свободно

вверх

кц

 

нц

пока не слева свободно

закрасить

вверх

кц

 

влево

вниз

 

нц

пока не спра­ва свободно

закрасить

вниз

кц

 

нц

пока спра­ва свободно

вниз

кц

 

нц

пока не спра­ва свободно

закрасить

вниз

кц

 

20.2 Решение

 

var n, k, g, m: integer;

begin

m:=30001;

readln(n);

for k:=1 to n do

begin

readln(g);

if (g mod 10 = 4) and (g < m) then

m:=g;

end;

writeln(m);

end.

Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1314.