СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Информатика
информатика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 11 № 1082

На ри­сун­ке – схема дорог, свя­зы­ва­ю­щих го­ро­да A, B, C, D, E, F, G, H. По каж­дой до­ро­ге можно дви­гать­ся толь­ко в одном направлении, ука­зан­ном стрелкой. Сколь­ко су­ще­ству­ет раз­лич­ных путей из го­ро­да А в город H?

 

Пояснение.

Начнем счи­тать ко­ли­че­ство путей с конца маршрута — с го­ро­да H. Пусть NX — ко­ли­че­ство раз­лич­ных путей из го­ро­да А в город X, N — общее число путей.

 

В H можно при­е­хать из F или G, по­это­му N = NH = NF + NG.

 

Аналогично:

 

NF = NE + ND = 2 + 2 = 4;

NG = ND = 2;

NE = NB + NA = 1 + 1 = 2;

ND = NC + NA = 1 + 1 = 2;

NC = NА = 1;

NB = NА = 1;

NА = 1.

 

Подставим в фор­му­лу (*): N = 4 + 2 = 6.

 

Ответ: 6.