СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Информатика
информатика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задания Д11 № 1062

На ри­сун­ке – схема дорог, свя­зы­ва­ю­щих го­ро­да А, Б, В, Г, Д, Е, К. По каж­дой до­ро­ге можно дви­гать­ся толь­ко в одном направлении, ука­зан­ном стрелкой. Сколь­ко су­ще­ству­ет раз­лич­ных путей из го­ро­да А в город К?

 

Решение.

Начнем счи­тать ко­ли­че­ство путей с конца маршрута — с го­ро­да К. Пусть NX — ко­ли­че­ство раз­лич­ных путей из го­ро­да А в город X, N — общее число путей.

 

В К можно при­е­хать из Д, В, Г или Е, по­это­му N = NК = NД + NВ + NГ + NЕ(*).

 

Аналогично:

 

NД = NБ + NВ = 1 + 3 = 4;

NВ = NБ + NА + NГ = 1 + 1 + 1 = 3;

NГ = NА = 1;

NЕ = NГ= 1;

NБ = NА = 1;

NА = 1.

 

Подставим в фор­му­лу (*): N = 4 + 3 + 1 + 1 = 9.

 

Ответ: 9.