Поиск
'





Всего: 75    1–20 | 21–40 | 41–60 | 61–75

Добавить в вариант

Тип 15 № 341

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

На бесконечном поле имеется вертикальная стена. Длина стены неизвестна. От верхнего конца стены вправо отходит горизонтальная стена также неизвестной длины. Робот находится в клетке, расположенной слева от нижнего края вертикальной стены.

На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные левее вертикальной стены и выше горизонтальной стены и прилегающие к ним. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм напишите в текстовом редакторе и сохраните в текстовом файле. Название файла и каталог для сохранения Вам сообщат организаторы экзамена.

 

15.2 Напишите программу, которая в последовательности целых чисел определяет сумму двух наибольших и сумму двух наименьших. Программа должна вывести две этих суммы в указанном порядке. Программа получает на вход целые числа, количество введённых чисел не известно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа по модулю не превышают 30 000.

В последовательности не менее двух чисел.


Тип 15 № 661

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеется стена, состоящая из 5 последовательных отрезков, расположенных змейкой: вниз, вправо, вверх, вправо, вниз. Все отрезки неизвестной длины. Робот находится в клетке, расположенной слева от верхнего края первой вертикальной стены. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные левее первого и ниже второго отрезков стены и ниже четвёртого и левее пятого отрезков стены. Робот должен закрасить только клетки, удовлетворяющие данному условию. Клетка X также должна быть закрашена. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 3 и оканчивающихся на 4. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа не превышают 30000. Программа должна вывести одно число: сумму всех натуральных чисел, кратных 3 и оканчивающихся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные
16
24
56
22
54
0
78

Тип 15 № 1273

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды – это команды-приказы:

вверх   вниз   влево   вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды – это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно   снизу свободно   слева свободно   справа свободно

Эти команды можно использовать вместе с условием «eсли», имеющим следующий вид:

если условие то

последовательность команд

все

Здесь условие – одна из команд проверки условия.

Последовательность команд — это одна или несколько любых команд-приказов.

Например, для передвижения на одну клетку вправо, если справа нет стенки и закрашивания клетки, можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

Для повторения последовательности команд можно использовать цикл

«пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

 

На бесконечном поле имеются две вертикальные стены одинаковой длины, расположенные точно одна напротив другой. Длина стен неизвестна. Расстояние между стенами неизвестно. Робот находится справа от первой стены в клетке, расположенной у её нижнего края. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

 

Напишите для Робота алгоритм, закрашивающий все клетки самого верхнего ряда, расположенные между стенами. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

 

 

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться.

 

Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 

 

 

 

 

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел вычисляет сумму всех двузначных чисел, кратных 8. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 – признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа не превышают 30 000.

Программа должна вывести одно число: сумму всех двузначных чисел, кратных 8.

 

Пример работы программы:

 

Входные данныеВыходные данные

17

16

32

160

0

48

Тип 15 № 40

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно над горизонтальной стеной у её левого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше горизонтальной стены и левее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму чисел, кратных 6. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 6. Количество чисел не превышает 100. Введённые числа не превышают 300. Программа должна вывести одно число — сумму чисел, кратных 6.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
12
25
6
18
Источник: ГИА по информатике 31.05.2013. Основная волна. Центр, Урал. Вариант 1302.

Тип 15 № 160

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В горизонтальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной рядом с вертикальной стеной слева от её нижнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше и ниже горизонтальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму чисел, оканчивающихся на 4. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 4. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — сумму чисел, оканчивающихся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные

3

14

25

24

38
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1308.

Тип 15 № 220

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Левый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В вертикальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно под горизонтальной стеной у её правого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки,

удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет минимальное число, оканчивающееся на 6. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 6. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — минимальное число, оканчивающееся на 6.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
26
16
36
16
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1311.

Тип 15 № 240

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В вертикальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно под горизонтальной стеной у её левого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму чисел, оканчивающихся на 3. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 3. Количество чисел не превышает 100. Введённые числа не превышают 300. Программа должна вывести одно число — сумму чисел, оканчивающихся на 3.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
13
23
24
36
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1312.

Тип 15 № 280

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Левый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В вертикальной стене есть ровно один проход, точное место прохода и его ширина неизвестны.Робот находится в клетке, расположенной непосредственно над горизонтальной стеной у её правого конца.На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет минимальное число, оканчивающееся на 4. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 4. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — минимальное число, оканчивающееся на 4.

 

 

Пример работы программы:

 

Входные данныеВыходные данные
3
24
14
34
14
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1314.

Тип 15 № 300

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеются две одинаковые горизонтальные параллельные стены, расположенные друг под другом и отстоящие друг от друга более чем на 1 клетку. Левые края стен находятся на одном уровне. Длины стен неизвестны. Робот находится в клетке, расположенной непосредственно под верхней стеной.На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные ниже горизонтальных стен. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму чисел, кратных 5. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 5. Количество чисел не превышает 100. Введённые числа не превышают 300. Программа должна вывести одно число — сумму чисел, кратных 5.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
15
25
6
40
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1315.

Тип 15 № 381

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеется вертикальная стена. Длина стены неизвестна. От нижнего конца стены вправо отходит горизонтальная стена также неизвестной длины. Робот находится в клетке, расположенной над правым краем горизонтальной стены. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные правее вертикальной стены, выше горизонтальной стены и примыкающие к ним. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу для решения следующей задачи. Камера наблюдения регистрирует в автоматическом режиме скорость проезжающих мимо неё автомобилей, округляя значения скорости до целых чисел. Необходимо определить минимальную зарегистрированную скорость автомобиля. Если скорость хотя бы одного автомобиля была больше 80 км/ч, выведите «YES», иначе выведите «NO».

Программа получает на вход число проехавших автомобилей N (1 ≤ N ≤ 30), затем указываются их скорости. Значение скорости не может быть меньше 1 и больше 300.Программа должна сначала вывести минимальную скорость, затем YES или NO.

 

Пример работы программы:

 

Входные данныеВыходные данные
4
74
69
63
96
63
YES

Тип 15 № 963

15.1

На бесконечном поле имеется вертикальная стена. Длина стены неизвестна. От верхнего конца стены вправо отходит горизонтальная стена также неизвестной длины. Робот находится в клетке, расположенной слева от нижнего края вертикальной стены.

На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные левее вертикальной стены и выше горизонтальной стены и прилегающие к ним. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм напишите в текстовом редакторе и сохраните в текстовом файле. Название файла и каталог для сохранения Вам сообщат организаторы экзамена.

 

15.2 Напишите программу, которая в последовательности целых чисел определяет количество чётных чисел, кратных 7. Программа получает на вход целые числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа по модулю не превышают 30 000. Программа должна вывести одно число: количество чётных чисел, кратных 7.

 

Пример работы программы:

 

Входные данныеВыходные данные

–32

14

17

0

1

Тип 15 № 5085

15.1. Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Ниже приведено описание Робота. У Робота есть четыре команды перемещения:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑, вниз ↓, влево ←, вправо →. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. Если Робот получит команду передвижения через стену, то он разрушится.

Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится Робот:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «eсли», имеющим следующий вид:

если условие то
последовательность команд
все

 

«Последовательность команд» — это одна или несколько любых команд, выполняемых Роботом. Например, для передвижения на одну клетку вправо, если справа нет стенки, можно использовать такой алгоритм:

если справа свободно то
вправо
все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и не (снизу свободно) то
вправо
все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие
последовательность команд
кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно
вправо
кц

 

Также у Робота есть команда закрасить, закрашивающая клетку, в которой Робот находится в настоящий момент.

 

Выполните задание.

 

На бесконечном поле имеется лестница. Сначала лестница спускается вниз слева направо, потом поднимается вверх также слева направо. После подъема лестница переходит в вертикальную стену. Высота каждой ступени 1 клетка, ширина — 1 клетка. Количество ступенек, ведущих вверх, и количество ступенек, ведущих вниз, неизвестно. Между спуском и подъемом ширина площадки 1 клетка. Робот находится в клетке, расположенной в начале спуска. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно над лестницей, как показано на рисунке. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для бесконечного поля и любого количества ступеней. При исполнении алгоритма Робот не должен разрушиться.

 

15.2. Напишите программу, которая по двум данным натуральным числам a и b, не превосходящим 30000, подсчитывает количество чётных натуральных чисел на отрезке [a, b] (включая концы отрезка). Программа получает на вход два натуральных числа a и b, при этом гарантируется, что 1 ≤ a  b  30000. Проверять входные данные на корректность не нужно. Программа должна вывести одно число: количество чётных чисел на отрезке [a, b].

 

Пример работы программы:

 

Входные данные

Выходные данные

10

20

6


Тип 15 № 120

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно слева от вертикальной стены у её верхнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше горизонтальной стены и левее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет количество чисел, кратных 6. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 6.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
18
26
24
2
Источник: ГИА по информатике 31.05.2013. Основная волна. Сибирь, Дальний Восток. Вариант 1306.

Тип 15 № 200

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Левый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В горизонтальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной рядом с вертикальной стеной справа от её верхнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше и ниже горизонтальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле. Название файла и каталог для сохранения Вам сообщат организаторы экзамена.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, оканчивающееся на 3. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 3. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, оканчивающееся на 3.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
13
23
3
23
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1310.

Тип 15 № 260

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В вертикальной стене есть ровно один проход, точное место прохода и его ширина неизвестны.Робот находится в клетке, расположенной непосредственно над горизонтальной стеной у её левого конца.На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет количество чисел, оканчивающихся на 6. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 6. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — количество чисел, оканчивающихся на 6.

 

Пример работы программы:

 

Входные данныеВыходные данные
3
16
26
24
2
Источник: ГИА по информатике 31.05.2013. Основная волна. Вариант 1313.

Тип 15 № 340

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеется лестница. Сначала лестница спускается вниз справа налево, затем спускается вниз слева направо. Высота каждой ступени — одна клетка, ширина — две клетки. Робот находится справа от верхней ступени лестницы. Количество ступенек, ведущих влево, и количество ступенек, ведущих вправо, неизвестно. На рисунке указан один из возможных способов расположения лестницы и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно над ступенями лестницы, спускающейся слева направо. Требуется закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 6 и оканчивающихся на 4. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число: сумму всех чисел, кратных 6 и оканчивающихся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные
14
24
144
22
12
0
168
Источник: Демонстрационная версия ГИА—2013 по информатике.

Тип 15 № 621

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеются 4 стены, расположенные в форме прямоугольника. Длины вертикальных и горизонтальных стен неизвестны. Робот находится в клетке, расположенной в левом верхнем углу прямоугольника. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные с внутренней стороны верхней и нижней стен. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 6 и оканчивающихся на 4. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число: сумму всех чисел, кратных 6 и оканчивающихся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные
24
6
34
22
84
0
108

Тип 15 № 641

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеется стена, состоящая из 5 последовательных отрезков, расположенных змейкой: вправо, вниз, влево, вниз, вправо, все отрезки неизвестной длины. Робот находится в самой левой клетке непосредственно под верхней горизонтальной стеной. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные ниже первого и левее второго отрезков стены и левее четвёртого и ниже пятого отрезков стены. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.). Клетка X также должна быть закрашена.

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 8 и оканчивающихся на 6. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 1000. Введённые числа не превышают 30000. Программа должна вывести одно число: сумму всех натуральных чисел, кратных 8 и оканчивающихся на 6.

 

Пример работы программы:

 

Входные данныеВыходные данные
16
24
56
22
12
0
72

Тип 15 № 784

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

Выполните задание.

На бесконечном поле имеется стена, состоящая из трёх последовательных отрезков: вправо, вниз, влево. Все отрезки неизвестной длины. Робот находится в клетке, расположенной в нижнем углу, который образуется вторым и третьим отрезком. На рисунке указан один из возможных способов расположения стены и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные правее второго отрезка. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для бесконечного поля и любого допустимого расположения стен. При исполнении алгоритма Робот не должен разрушиться.

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 6 и оканчивающихся на 4. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчи- вается числом 0 (0 — признак окончания ввода, не входит в последовательность). Количество чисел не превышает 100. Введённые числа не превышают 300. Программа должна вывести одно число: сумму всех чисел, кратных 6 и оканчивающихся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные

54

28

72

34

24

0

78

Тип 15 № 836

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

 

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

На бесконечном поле имеется стена, длины отрезков стены неизвестны. Стена состоит из двух вертикальных и соединяющего их горизонтального отрезков (отрезки стены расположены "буквой П"). В горизонтальном участке есть ровно один проход, место и длина прохода неизвестны. Робот находится в клетке, расположенной над правым концом горизонтального отрезка стены.

На рисунке указан один из возможных способов расположения стен и Робота

(Робот обозначен буквой «Р»).

 

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные над горизонтальным отрезком стены слева от прохода, и все клетки, расположенные с внешней стороны от левого вертикального участка стены. Робот должен закрасить только клетки, удовлетворяющие данному условию.

Например, для приведённого справа рисунка Робот должен закрасить следующие клетки (см. рис.).

 

 

Конечное расположение Робота может быть произвольным. При исполнении алгоритма Робот не должен разрушиться.

 

Алгоритм должен решать задачу для произвольного размера поля, любого допустимого расположения стен и любого расположения и размера прохода.

 

 

 

 

 

 

 

 

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму всех чисел, кратных 4 и оканчивающихся на 8. Программа получает на вход натуральные числа, количество введённых чисел неизвестно, последовательность чисел заканчивается числом 0 (0 – признак окончания ввода, не входит в последовательность). Количество чисел не превышает 100. Введённые числа не превышают 300. Программа должна вывести одно число: сумму всех чисел, кратных 4 и оканчивающихся на 8.

 

Пример работы программы:

 

Входные данныеВыходные данные

8

22

16

28

18

0

36
Решение · ·
Всего: 75    1–20 | 21–40 | 41–60 | 61–75