№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Раздел кодификатора ФИ­ПИ
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Задания
Задания Д10 № 31

На рисунке — схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж и К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?

Решение.

Начнем считать количество путей с конца маршрута — с города К. Пусть NX — количество различных путей из города А в город X, N — общее число путей.

 

В К можно приехать из Е, В, Г или Ж, поэтому N = NК = NЕ + NВ + N Г + NЖ (*).

 

Аналогично:

 

NЕ = NБ + NВ = 1 + 2 = 3;

NЖ = NД = 1;

NВ = NА + NБ = 1 + 1 = 2;

NГ = NА + NД = 1 + 1 = 2;

NД = NА = 1;

NБ = NА = 1.

 

Подставим в формулу (*): N = 3 + 2 + 2 + 1 = 8.